Klausur zur Vorlesung Mathematik für Physiker I

Name (Bitte in Druckschrift): Matrikelnummer:

Studienfach:

Von den Aufgaben 4 bzw. 5 ist nur eine Aufgabe Ihrer Wahl zu bearbeiten, also entweder Aufgabe 4 oder Aufgabe 5. Sollten Sie zu beiden Aufgaben eine Bearbeitung abgeben, wird nur Aufgabe 4 gewertet. Ergebnisse aus der Vorlesung und den Übungsaufgaben dürfen verwendet werden.

Aufgabe 1 (8 Punkte)

Betrachten Sie die folgenden Aussageformen.

$$A(p,q,r) := (p \wedge \neg q) \Rightarrow r, \qquad B(p,q,r) := p \Rightarrow (\neg q \vee r)$$

a) [4 Punkte] Ergänzen Sie die zugehörige Wahrheitstafel.

p	q	r	$p \wedge \neg q$	$(p \land \neg q) \Rightarrow r$	$\neg q \vee r$	$p \Rightarrow (\neg q \lor r)$
w	w	w				
w	w	f				
w	f	w				
W	f	f				
f	w	w				
f	w	f				
f	f	w				
f	f	f				

b) [4 Punkte] Untersuchen Sie die Beziehung zwischen beiden Aussageformen anhand der Wahrheitstafel.

p	q	r	$\Lambda(p,q,r) \Rightarrow B(p,q,r)$	$B(p,q,r) \Rightarrow A(p,q,r)$	$A(p,q,r) \Leftrightarrow B(p,q,r)$
W	w	w			
w	w	f			
w	f	w			
W	f	f			
f	w	W			
f	w	f			
f	f	w			
f	f	f			

Welche Belegung von p,q,r muß ausgeschlossen werden, damit A(p,q,r) notwendig für B(p,q,r) ist?

Aufgabe 2 (7 Punkte)

Berechnen Sie die Ableitungen der folgenden Funktionen mit den Ihnen bekannten Ableitungsregeln. Achten Sie darauf, wo immer es möglich ist. Zwischenschritte anzugeben, um die Rechnung nachvollziehbar zu machen.

- 1. [2 Punkte] $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2 \sin(e^x)$ 2. [2 Punkte] $g: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}^+$, $x \mapsto x \ln(x) x$ 3. [3 Punkte] $h: \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}^+ \setminus \{0\}$, $x \mapsto x^x$

Tip zu 3.: Betrachte $e^{\ln(h(x))}$

Aufgabe 3 (18 Punkte)

Sei $\bar{f}:]-2, \infty[\to \mathbb{R}, \quad x \mapsto \ln(2+x)$. Weiterhin sei $f^{(n)}$ die n-te Ableitung von f für alle $n \in \mathbb{N} \setminus \{0\}$.

a) [7 Punkte] Zeigen Sie durch vollständige Induktion:

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(x+2)^n}$$
 für alle $n \ge 1$

b) [4 Punkte] Sci $T_{f,o}(x)$ die Taylorreihe von f mit Entwicklungspunkt $x_{o} = 0.$ Zeigen Sie:

$$T_{f,o}(x) = \ln(2) + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n2^n}$$

c) [7 Punkte] Berechnen Sie den Konvergenzradius R der Taylorreibe $T_{f,o}(x)$. Konvergiert die Reihe auch für $x = \pm R$? (mit kurzer Begründung)

Aufgabe 4 (17 Punkte, Alternative zu Aufgabe 5)

Für $n \in \mathbb{N} \setminus \{0\}$ sei $f_n : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{\sin(nx)}{n}$.

- a) [7 Punkte] Geben Sie die Ableitung von f_n an und fertigen Sie jeweils eine einfache, schematische Skizze für die ersten drei f_n bzw. f'_n an. (Also n = 1, 2, 3) (Denken Sie an Ihre Zeit!)
- b) [8 Punkte] Zeigen Sie, daß die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ punktweise gegen die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto 0$ konvergiert. Konvergiert $(f_n)_{n\in\mathbb{N}}$ auch gleichmäßig gegen f? Beweisen Sie Ihre Antwort!
- c) [2 Punkte] Konvergiert die Folge der Ableitungen $(f'_n)_{n\in\mathbb{N}}$ punktweise gegen f'? (Es reicht einen Punkt x anzugeben, für den $\lim_{n\to\infty} f'_n(x) \neq f'(x)$ gilt.)

Aufgabe 5 (17 Punkte, Alternative zu Aufgabe 4)

Sci $I \subset \mathbb{R}$ ein beliebiges Intervall, $f: I \to \mathbb{R}$ eine gleichmäßig stetige Abbildung und $(x_n)_{n \in \mathbb{N}}$ eine Cauchy-Folge in I.

- a) [6 Punkte] Zeigen Sic, daß $(f(x_n))_{n\in\mathbb{N}}$ eine Cauchy-Folge in \mathbb{R} ist.
- b) [5 Punkte] Geben Sie ein Beispiel einer stetigen Funktion $f: I \to \mathbb{R}$ und einer Cauchy-Folge in I, so daß $(f(x_n))_{n \in \mathbb{N}}$ keine Cauchy-Folge ist.

(Die folgenden Frage können bei der Suche behilflich sein, sollten aber nicht schriftlich bearbeitet werden.)

– Kann I ein abgeschlossenes Intervall sein?

daß sie gleichmäßig stetig ist, sind Sie fast fertig ...)

 $- \operatorname{Kann} \lim_{n \to \infty} x_n \in I \text{ sein?}$

Es reicht I, f und $(x_n)_{n \in \mathbb{N}}$ anzugeben und zu zeigen, daß $(f(x_n))_{n \in \mathbb{N}}$ keine Cauchy-Folge ist.

c) [6 Punkte] Seien $D, W \subset \mathbb{R}$, und $f: D \to W$ eine gleichmäßig stetige und bijektive Abbildung. Ist die Umkehrabbildung $f^{-1}: W \to D$ ebenfalls gleichmäßig stetig? (Hinweis: Betrachten Sie die Wurzelfunktion! Wenn Sie gezeigt haben,