Molekularbiologie 1 - Klausur

Lipiddoppelmembran:	Abtrennung des Inneren der Zelle von der Umgebung Undurchlässig für die meisten Biomoleküle (Ionen, niedermolekulare Verbindungen, wie Glucose, Aminosäuren, größere Moleküle, wie Proteine) Permeabel nur für Wasser (H_2O), gelöste Gase (O_2, CO_2, NH_3), sowie für kleinere polare Moleküle (Ethanol, Harnstoff)
integrales Membranprotein:	durchspannen die ganze Membran Vielzahl von Funktionen: Austausch von Stoffen Austausch von Informationen zwischen dem Inneren der Zelle und dem extrazellulären Raum

1. Aufgaben der Lipiddoppelmembran und der integralen Membranproteine.

Alle Zellorganellen auflisten und Funktionen beschreiben.

Zellorganellen und ihre Funktion

Organellen sind durch ihren Bau definierte, mit bestimmten Funktionen ausgestattete Zellstrukturen. Nach ihrer Hülle (Membran) kann man die Organellen der Eukaryotenzelle (Eucyte) in drei Gruppen einteilen:

Organellen mit Doppelmembran

Alle Organellen mit Doppelmembran entstehen aus sich selbst

Zellkern (Nukleus)

- Bau: kugelig bis oval, schr unterschiedliche Größe, enthält DNA und Proteine (z.B. Histone) und ein bis mehrere Kernkörperchen (Nucleoli: bestehen aus RNA), im Arbeitskern liegt die DNA locker als Chromatin vor, während Teilungen verkürzt sie sich zu Chromosomen
- Funktion: Speicherort der Erbinformation, Synthese von messenger-RNA für die Proteinsynthese, identische Verdopplung der Erbsubstanz DNA, Regulation von Genwirkungen

Mitochondrien

- Bau: meist länglich, oval, etwa 10 µm lang; gefaltete, oberflächenvergrößernde Membran (Lamellenund Röhrensystem)
- Funktion: Ort der Zellatmung, umso intensiver der Stoffwechsel in einer Zelle ist, umso mehr Mitochondrien enthält sie (z.B. Leberzelle: ca. 1000; Erythrocyten enthalten keine Mitochondrien)

Plastiden (kommen nur in Pflanzenzellen vor)

-	Chloroplasten:	durch Chlorophyll grün gefärbt, Orte der Photosynthese; bei höheren Pflanzen
		meist linsenförmig, bei Algen auch andere Formen; in eine fast farblose
		Grundsubstanz (Stroma) sind geldrollenförmige Stapel (Grana) eingelagert
	- Leukoplasten:	farblos, Orte der Stärkespeicherung
	C1	

- Chromoplasten: gelb - rot, z.B. Träger der Blütenfarbstoffe

Organellen mit einfacher Membran

Endoplasmatisches Reticulum (ER)

Bau: Netzförmiges Membransystem, das Kernmembran und Zellmembran verbindet Funktion: Stofftransport innerhalb der Zelle und zu Nachbarzellen, enzymatische Reaktionen. trägt häufig Ribosomen (Rauhes ER)

Dictvosomen

Bau: Membransystem aus Bläschen und flachen Säckchen, das am Rand Bläschen (Golgi-Bläschen) abschnütt

Funktion: Speicherung und Synthese von Stoffen (Milch der Säugetiere. Polysaccharide für Pflanzenzellwände, usw.), erzeugen u.a. Bausteine der Pflanzen-Zellwand, die in Golgi-Bläschen zur Zellmembran transportiert werden

Die Gesamtheit der Dictyosomen wird als Golgi-Apparat bezeichnet

Microbodies

Membranumgebene Zellräume für verschiedene Stoffwechselreaktionen

Lysosomen

Bau: ca. 0.3 μm groß, einfache Bläschen, gehen aus dem ER hervor Funktion: enthalten verschiedenste Enzyme → Stoffabbau, Bekämpfung von Krankheitserregern

Vakuolen

dient der intrazellulären Verdauung und der Speicherung von Stoffen → Zellsaft (Zucker, Säuren, Farbstoffe, usw.); in Tierzellen sehr klein und zahlreich, in Pflanzenzellen ein großer Hohlraum; Tonoplast = Membran zwischen Vakuole und Plasma

Organellen ohne Membran

Ribosomen

Bau: ca. 15 nm groß, kugelförmig, entstehen im Nucleolus des Zellkerns, bestehen aus ribosomaler RNA und Proteinen

Funktion: Orte der Proteinsynthese, oft dem ER aufgelagert (rauhes ER)

Cytoskelett

faserartige Proteinstrukturen mit unterschiedlichen Aufgaben: halten die Gestalt der Zelle aufrecht, dienen der Bewegung (Actin und Myosin der Muskeln), usw.

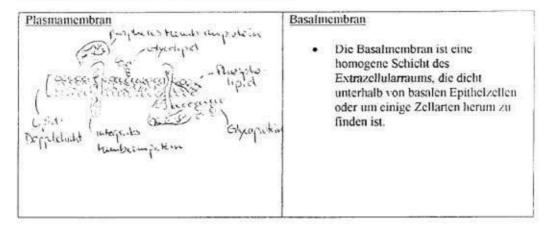
Zentriolen

Bau: bestehen aus den Mikrotubuli-Proteinen, oft kennzeichnender Bau aus 2 Zentralzylindern und 9 umgebenden Zylinder (9+2-Bau)

Funktion: bilden bei der Zellteilung die Kernspindel, bewegende Teile von Geißeln

- 3. Was besagt die Signalpeptidhypothese?
 - Jedes Protein besitzt am Ende der Kette eine Signalsequenz. Damit wird der Membrantransport in die Zellorganellen gesteuert.
 - Das Signalpeptid, das aus dem Ribosom austritt bindet an ein Signal-Erkennungs Partikel (SRP). Der SRP-Ribosomen Komplex dockt dann an den SRP-Rezeptor und den Proteinkanal (=Translocon) an.
 - Das SRP dissoziert vom Rezeptor weg und die naszierende Polypeptidkette wird durch den Kanal z B. ins ER-Lumen geschleust.

Was ist ein Membranpotential?


4

1

Beschreibe den Zusammenhang zwischen Membranpotential und Proteineinbau.

- Zwischen dem Inneren der Zelle und der extrazellulären Flüssigkeit besteht in der Regel eine elektrische Potentialdifferenz. Sie tritt unmittelbar an der Membran auf und wird deshalb auch Membranpotential genannt.
- Die elektrische Potentialdifferenz zwischen Innen- und Außenraum ist das Membranpotential.

5. Zeichne eine Plasmamembran und eine Basalmembran.

- 6. Was ist ein Organ und was ist Gewebe?
 - Organ Umgrenzter Verband von mehreren Geweben mit einer gemeinsamen Aufgabe Bsp.: Niere (Blutreinigung). Laubblatt (Energiegewinnung)
 - Gewebe Verband von mehreren Zellen mit gleicher Aufgabe und gleicher Struktur Bsp.: Nierenmark, Grundgewebe des Blattstiels
- Zeichne die allgemeine Struktur von Purinen und Pyrimidinen? Welche Basen gehören zu DNA und RNA?

	RNA & DNA	RNA	DNA
	$H = \begin{pmatrix} Adenin(Acc) & Guanin(Gucc) \\ \lambda_H z & \\ &$		
Pyrimidin	Cytosin (Cyt) kui2 C N ^m C C C C C C C C C C C C C C	Uracil (Urac)	

- Wieviele Chromosomen besitzt der Mensch?
 - 46 Chromosomen (diploider Satz), 22 normale Chromosomen, 2 Geschlechts-Chromosomen

Aus wievielen Basenpaaren besteht das Genom?

ca. 3000 Millionen

Wie lang ist das Genom des Menschen ausgestreckt?

• 1m

8.

Wicviele Gene hat das menschliche Genom?

- 30,000 40,000 (40:000 100:000)
- Wann wurde das menschliche Genom entschlüsselt?
 - 26. Juni 2000 von Craig Venter

9. Beschreibe die drei posttranskriptionalen Veränderungen der RNA.

- Capping
- Splicing

10. Zentrifugation:

Dichte von Partikel, Medium und Puffer.

Verdoppelung der Winkelgeschwindigkeit:

wie verändert sich die Sedimentationsgeschwindigkeit bei differentieller Zentrifugation (4x schneller) und bei Dichtegradientenzentrifugation nach langer Zentrifugationsdauer (bleibt gleich (wahrscheinlich)).

- Differentielle Zentrifugation (Festwinkelrotor): Partikel >> Medium. Medium = const.

- Zonenzentrifugation (vertikalrotor): Partikel > Medium, Puffer < Medium

- Isopyknische Zentrifugation (Ausschwingrotor): Medium(max) > Partikel > Medium(min), Puffer < Medium(min)

11. Lückentext zu Ionenaustauscher und weiterer chromatographischer Technik.

Ionenaustauscher (Trennung nach Ladung)

 Die Ionenaustausch-Chromatographie basiert auf elektrostatischen Wechselwirkungen zwischen Ionen entgegen gesetzter Ladungen.

Kationenaustauscher (negative Ladungen)

- Anionen liegen vor. die Kationen lagern sich an, Anionen laufen durch

- Anionenaustauscher (positive Ladung)
 - Kationen liegen vor. Anionen lagern sich an und Kationen wandern durch

Chromatographie

- Gas- und Flüssigkeits-Chromatographie

- Affinitätschromatographic (Trennung nach Biospezifität)

mit Hilfe von Liganden, Eluation zur Aufhebung der Wechselwirkung zwischen Protein und Ligand
Ausschluß-/ Gelchromatographie (Trennung nach Größe und From)

12. Multiplechoice (triffi zu, kann zutreffen, trifft nicht zu) zu SDS-PAGE und Westernblot

Elektrophorese

- Aufbau: Anode und Kathode

- Trennprinzip: Unterschiedliche Wanderung geladener Teilchen in einem elektrischen Feld aufgrund unterschiedlicher Ladung und Größe

- Zonenelektrophorese (Trennung nach Ladung, Größe und Form, Nachweis: Coomassie, Silber, Westernblot)

Diskontinuierliche Elektrophorese (Trennung nach Ladung, Größe und Form)

- SDS-Page (Trennung nach Größe)

13. Plasmidring mit Schneidestellen für Restriktionsenzyme.

Mit welchem Gel wird bei DNA (RNA, Proteine >500kDa) Gelelektrophorese gemacht?.

- Agarose

- Polyacrylamid (für Proteien < 800 kDa)

Wie kann man auf Gel DNA sichtbar machen? - mit Ethidiumbromid

Elektrophoresebild bei Anwendung von verschiedenen Enzymen malen (Kästehen waren vorgegeben).